Are zinc-finger domains of protein kinase C dynamic structures that unfold by lipid or redox activation?

نویسندگان

  • Feng Zhao
  • Marianne Ilbert
  • Ranjani Varadan
  • Claudia M Cremers
  • Beatrice Hoyos
  • Rebeca Acin-Perez
  • Valerie Vinogradov
  • David Cowburn
  • Ursula Jakob
  • Ulrich Hammerling
چکیده

Protein kinase C (PKC) is activated by lipid second messengers or redox action, raising the question whether these activation modes involve the same or alternate mechanisms. Here we show that both lipid activators and oxidation target the zinc-finger domains of PKC, suggesting a unifying activation mechanism. We found that lipid agonist-binding or redox action leads to zinc release and disassembly of zinc fingers, thus triggering large-scale unfolding that underlies conversion to the active enzyme. These results suggest that PKC zinc fingers, originally considered purely structural devices, are in fact redox-sensitive flexible hinges, whose conformation is controlled both by redox conditions and lipid agonists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen.

Zinc is a structural component of many regulatory molecules including transcription factors and signaling molecules. We report that two alternate signaling pathways of protein kinase C (PKC) activation involving either the lipid second messengers (diacylglycerol and its mimetics, the phorbol esters) or reactive oxygen converge at the zinc finger of the regulatory domain. They all trigger the re...

متن کامل

Zinc finger proteins: new insights into structural and functional diversity.

Zinc finger proteins are among the most abundant proteins in eukaryotic genomes. Their functions are extraordinarily diverse and include DNA recognition, RNA packaging, transcriptional activation, regulation of apoptosis, protein folding and assembly, and lipid binding. Zinc finger structures are as diverse as their functions. Structures have recently been reported for many new zinc finger doma...

متن کامل

SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents.

SAG (sensitive to apoptosis gene) was cloned as an inducible gene by 1,10-phenanthroline (OP), a redox-sensitive compound and an apoptosis inducer. SAG encodes a novel zinc RING finger protein that consists of 113 amino acids with a calculated molecular mass of 12.6 kDa. SAG is highly conserved during evolution, with identities of 70% between human and Caenorhabditis elegans sequences and 55% b...

متن کامل

The zinc ring finger in the bICP0 protein encoded by bovine herpesvirus-1 mediates toxicity and activates productive infection.

The bICP0 protein encoded by bovine herpesvirus 1 (BHV-1) is believed to activate transcription and consequently productive infection. Expression of full-length bICP0 protein is toxic in transiently transfected mouse neuroblastoma cells (neuro-2A) in the absence of other viral genes. However, bICP0 does not appear to directly induce apoptosis. Although bICP0 is believed to be functionally simil...

متن کامل

Dynamics of glycolipid domains in the plasma membrane of living cultured neurons, following protein kinase C activation: a study performed by excimer-formation imaging.

Dynamic changes of glycolipid domains within the plasma membranes of cultured rat cerebellar granule cells have been investigated. For this purpose, a pyrene-labelled derivative of G(M1) ganglioside has been incorporated in the cell plasma membrane, and the rate of excimer formation, directly related to the formation of domains, has been studied by a fluorescence imaging technique (excimer-form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antioxidants & redox signaling

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2011